3GPP TSG_CN5 (Open Service Architecture – OSA)

Meeting #9, Helsinki, FINLAND, 6 – 8 February 2001
Tdoc N5-010037

Source:
Ericsson, Alcatel

Title:
Dynamic attaching mechanism for CallLegs.
Agenda Item:

Document for:
Approval
Category:

Work Item ID:

Doc Summary:

Specs involved:

Introduction

At the moment the default behaviour for getting new parties in a call is :

· application uses the createAndRouteCallLeg() and when party answers the party is implicitly attached to the call.

· application uses the atomic operations {createCallLeg(), eventReportReq(), route() and attachMedia()} and when the party answers the party has to be explicitly attached to the call.

It is thus not possible for applications to dynamically per call choose whether the CallLeg has to be attached explicitly or not. Of course, by means of the Service Properties the application can indicate that it is e.g. interested in using an SCF instance where the Legs are automatically attached when the party answers the call. But then this property holds for all calls “controlled” by this SCF instance.

However, it is very useful for applications to be able to indicate that for a certain call e.g. explicit attach is needed so it can first do some user interaction before the party is included in the call.

This contribution outlines how the current API can be slightly improved in order to allow dynamic selection of the attach mechanism.

Dynamic attach / detach

The following alternatives are possible to allow dynamic setting of the attach mechanism:

1. extra parameter in the createCallLeg / createAndRouteCallLeg.

2. extra parameter in createAndRouteCallLeg / route.

3. introduction of setAttachMechanism / getAttachMechanism operation

In principle the attach mechanism is to be considered as a property of the CallLeg. This means it should be modelled as an object attribute. In OO attributes are set during construction of an object and / or by means of so-called setter methods. Therefore the combination of alternative 1 and 3 is the preferred solution.

In general it would be good to introduce more of these so-called setter operations (e.g. for setting the Call / connection ownership , this is treated in another contribution. This contribution focusses on alternative 1.

Connection properties

It is also clear that the attach mechanism is to be regarded as just one of many possible connection properties. One can think of e.g. mixing algoritms. Therefore it is proposed in this contribution to introduce the more general connection properties and treat the attach mechanism as just one of them. This allows for future extensions, that are especially in the case of the Multi-media call control foreseen to be useful.

Impact on the specification.

Below the basic implact on the specification is outlined.

4.1.1 Interface Class IpMultiPartyCall
Inherits from: IpService
The Multi-Party Call provides the possibility to control the call routing, to request information from the call, control the charging of the call, to release the call and to supervise the call. It also gives the possibiltiy to manage call legs explicitly. Via the legs the application can also influence the media in multi-media calls. If an application uses the multi-party call control interface it may call the createAndRouteCallLeg() operation several times without disconnecting already connected destination. Therefore, an application may implicitly create more then one (destination) call leg. However, there can only be at most one call leg that owns the call ("call owner") at any time. In contrast to the conference service it is not possible to move legs to another call object.
<<Interface>>

IpMultiPartyCall

getCallLegs (callSessionID : in TpSessionID, callLegList : out TpCallLegIdentifierSetRef) : TpResult

createCallLeg (callSessionID : in TpSessionID, appCallLeg : in IpAppCallLegRef, targetAddress : in TpAddress, originatingAddress : in TpAddress, originalCalledAddress : in TpAddress, redirectingAddress : in TpAddress, appInfo : in TpCallAppInfoSet, connectionProperties : in TpCallLegConnectionProperties, callLeg : out TpCallLegIdentifierRef) : TpResult

createAndRouteCallLegReq (callSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet, targetAddress : in TpAddress, originatingAddress : in TpAddress, originalDestinationAddress : in TpAddress, redirectingAddress : in TpAddress, appInfo : in TpCallAppInfoSet, connectionProperties : in TpCallLegConnectionProperties, appLegInterface : in IpAppCallLegRef, callLegReference : out TpCallLegIdentifierRef) : TpResult

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : TpResult

deassignCall (callSessionID : in TpSessionID) : TpResult

getCallInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : TpResult

setCallChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : TpResult

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) : TpResult

superviseCallReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in TpCallSuperviseTreatment) : TpResult

getMoreDialledDigitsReq (callSessionID : in TpSessionID, length : in TpInt32) : TpResult

Method

getCallLegs()

This method requests the identification of the call leg objects associated with the call object. Returns the legs in the order of creation.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
callLegList : out TpCallLegIdentifierSetRef

Specifies the call legs associated with the call. The set contains both the sessionIDs and the interface references.
Raises

TpGeneralException,TpGCCSException
Method

createCallLeg()

This method requests the creation of a new call leg object
Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
appCallLeg : in IpAppCallLegRef

Specifies the application interface for callbacks from the call leg created.
targetAddress : in TpAddress

Specifies the destination party to which the call should be routed.
originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.
originalCalledAddress : in TpAddress

Specifies the original address to which the call was initiated.
redirectingAddress : in TpAddress

Specifies the last address from which the call was redirected.
appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call leg (such as alerting method, tele-service type, service identities and interaction indicators).
connectionProperties : in TpCallLegConnectionProperties,

Specifies the properties of the connection.

callLeg : out TpCallLegIdentifierRef

Specifies the interface and sessionID of the call leg created.
Raises

TpGeneralException,TpGCCSException
Method

createAndRouteCallLegReq()

This operation requests creation and routing of a new callLeg. Requested events will be reported on the IpAppCallLeg interface. This interface the application must provide through the appLegInterface parameter.

The extra address information (i.e., originalDestinationAddress, redirectingAddress, originatingAddress) is optional. If not present (i.e., the plan is set to P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used, otherwise the network or gateway provided numbers will be used.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these criteria are reported. Examples of events are "adress analysed", "answer", "release".

targetAddress : in TpAddress

Specifies the destination party to which the call should be routed.
originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.
originalDestinationAddress : in TpAddress

Specifies the original destination address of the call.
redirectingAddress : in TpAddress

Specifies the address from which the call was last redirected.
appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service identities and interaction indicators).

connectionProperties : in TpCallLegConnectionProperties,

Specifies the properties of the connection.

appLegInterface : in IpAppCallLegRef

Specifies a reference to the application interface that implements the callback interface for the new call leg. Requested events will be reported by the eventReportRes() operation on this interface.
callLegReference : out TpCallLegIdentifierRef

Specifies the reference to the CallLeg interface that was created.
Raises

TpGCCSException,TpGeneralException
....

TpCallLegIdentifierSet

Defines a Numbered Set of Data Elements of TpCallLegIdentifier.
TpCallLegIdentifierSetRef

Defines a Reference to type TpCallLegIdentifierSet.

TpCallLegIdentifierRef

Defines a Reference to type TpCallLegIdentifier.

TpCallLegIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Call Leg object

Sequence Element Name
Sequence Element Type
Sequence Element Description

CallLegReference
IpCallLegRef
This element specifies the interface reference for the callLeg object.

CallLegSessionID
TpSessionID
This element specifies the callLeg session ID.

TpCallLegAttachMechanism

Defines how a CallLeg should be attached to the call.

Name
Value
Description

P_CALLLEG_ATTACH_IMPLICITLY
0
CallLeg should be attached implicitly to the call.

P_CALLLEG_ATTACH_EXPLICITLY
1
CallLeg should be attached explicitly to the call by using the attachMedia() operation. This allows e.g. the application to do first user interaction to the party before he / she is placed in the call.

TpCallLegConnectionProperties

Defines the Sequence of Data Elements that specify the connection properties of the Call Leg object

Sequence Element Name
Sequence Element Type
Sequence Element Description

AttachMechanism
TpCallLegAttachMechanism
Defines how a CallLeg should be attached to the call.

Conclusion

This contribution outlines how the current API can be slightly improved in order to allow dynamic selection of the attach mechanism. We kindly request to accept the proposal and put it in the specfication.

